0=-16t^2+128t+50

Simple and best practice solution for 0=-16t^2+128t+50 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+128t+50 equation:



0=-16t^2+128t+50
We move all terms to the left:
0-(-16t^2+128t+50)=0
We add all the numbers together, and all the variables
-(-16t^2+128t+50)=0
We get rid of parentheses
16t^2-128t-50=0
a = 16; b = -128; c = -50;
Δ = b2-4ac
Δ = -1282-4·16·(-50)
Δ = 19584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{19584}=\sqrt{576*34}=\sqrt{576}*\sqrt{34}=24\sqrt{34}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-128)-24\sqrt{34}}{2*16}=\frac{128-24\sqrt{34}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-128)+24\sqrt{34}}{2*16}=\frac{128+24\sqrt{34}}{32} $

See similar equations:

| 464÷131=x(162) | | 3(2x+5)=6x+15x= | | .5x+3=x-2.5+3 | | 2x^2-17x+6=0 | | 5x=x-2.5 | | 18.3-a=2.3 | | k-6/5=-14 | | 16=1.25(5x+15) | | -3x=x-5 | | 3x+5x+4x=0 | | 3x-1=-2+39 | | 1/4(4x-8)=40 | | 1+2(-4v-)=-(-3+2v)-6v | | 2x+6(-2+6x)=-2+6(6x-5) | | 2×+6(-2+6x)=-2+6(6x-5) | | 39.95+5.50x=105.95 | | -8(2-7x)+1=-15+x | | $39.95+$5.50x=$105.95 | | x+2/2-x-2/10=-1 | | -17-7k=-7(k+) | | z+3(z-3)=19 | | 3(-3x-8)=-17-8x | | 11/6+m=2/9 | | 4y-4=6y-6 | | -3(a-4)=12-3a | | -8=-4(y-5) | | x+5/7+2x+1/5=2 | | 3n+4=2n-10 | | 4m=5m | | 7w-4=31 | | -6w+4(w-8)=-14 | | 4(x+3)-7x=-15 |

Equations solver categories